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The stability of flow of an inviscid non-heat-conducting gas in a channel with 

closing compression shock is investigated in the case when the boundary condi- 
tion at the channel outlet is specified in the form of a linear relationship bet- 
ween the unsteady perturbation of the left-hand Riemannian invariant which de- 

fines the reflected acoustic wave and that of the right-hand Riemannian invari- 

ant and the entropy function which define waves that reach the outlet from the 
channel side. The investigation results in the determination of stability region 

in the plane of reflection coefficients. The analysis is based on the ” D- separa- 
tion” method widely used in the theory of automatic control [I, 21 and on the 
stability conditions obtained in [3] for the case when one of the reflection coef- . 
ficients is zero. The investigation is carried out as in [3] in a “quasi-cylindrical” 

approximation. 

1. The quasi-cylindrical approximation used here was first proposed by G. G. Chernyi 
in 1953. However the final formulas of this approximation presented in [S] do not pro- 
vide a sufficiently clear concept of conditions that limit its validity. Because of this, 

we shall consider this question in greater detail. 
Let us consider the flow of a perfect gas in a channel whose cross section area F is 

a known function of the a+coordinate measured along the channel axis. In what follows 

we investigate the stability of a steady flow with a closing compression shock in which 

the stream velocity varies from supersonic (to the left of the shock) to subsonic. As the 
reference point for x we take the stationary position of the shock and as the character- 
istic length we take distance of that section from the channel outlet. Hence the outlet 

section is at x = 1. The reduction of remaining parameters to the dimensionless form 
is carried out as in [a], except that the critical velocity and density of the steady stream 
to the left of the shock are taken as the corresponding characteristic’parameters. 

Equations of one-dimensional unsteady flow are linearized in the usual manner, and 
pressure p, density p and velocity u are represented as 

u (5, t) = li (x) [I + n, (5, t)] 

where t is the time, capital letter denotes respective steady quantity and the subscript 
IL appears at the relative unsteady perturbation of the particular parameter. 

After linearization of equations defining the flow of a perfect gas with adiabatic ex- 
ponent x, we obtain the following system: 

D+K I Dt := a,,& *-- a,,L -I- u13S (1.1) 

D-L I Dt = a,,K + a,,L -r az3S, DSiDt= 0 

426 



On the 8taMlity of flow of prfcct gas in a channel 42’i 

where R, L and s’ are the unsteady perturbations of the right- and left-hand Riemann 

invariants, and of the entropy function, respectively ; D + / Dt, D- i Dt and D / Dt 
are operators of differentiation along the characteristics of the first and second sets, and 

of the particle trajectory ; A is the steady-state speed of sound, and 1vI = U i A is 
the Mach number. The coefficients Uij are determined by formulas 

(1.2) 

a21 = a,, + AM’, uz2 = aI2 - AM’ 

M’ = M 12 + (X - l)W] (111 F)’ i 2 (W - 1) 

where primes denote total derivatives with respect to 2. 

It will be seen from (1.1) that the trajectories of acoustic waves propagating respec- 

tively down- and upstream (the R- and L-waves) and entropy waves (S-waves) are 

defined by the equations 

dxidt= U-j-A, dxldt = U-A, dx/dt= U 

The time taken by these waves to move from the shock to the channel outlet (or in 

the reverse direction) are, respectively, 
1 1 1 

It is not difficult to show that in the considered case (0 ( U < A) the inequality 

rr. > rn is valid. If the stream ahead of the shock (and consequently, also behind it) 
isclosetosonic (AZ Uz 1) and 1 M ’ I< 1 throughout section 0 < x \( 1, then 

‘CL > 1, and rs and ‘TV are quantities of the order of unity. As implied by formulas 

(1.2) all coefficients Uij are proportional to &A”. Hence, if the maximum of ( hf’/ is 
such that the product 1 iif’/ TL < 1, then, as seen from (1. l), the relative increments 

of invariants R and L for the motion of R- and L-waves along the channel are, also 
considerably smaller than unity. Moreover, in that case the relative vibrations of the 
quantities U, U + A and U - A are also small. The. latter makes it possible to 

substitute for these quantities their values for x --t +0, i.e. to the left of the closing 
shock (the quantities at z --f +O will be denoted by subscript “plus”). As the result 
we obtain the following quasi-cylindrical approximation equations : 

R (x, 0 = R (E), L (x, 4 = L @I), S (z, t) = S (5) (1.3) 

E= II: - (U+ + A+)t, q = 2 - (U+ - A+)t, 5 = z - U+t 
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TR = 1 1 (u+ $- A+), 0~ = 1 / (A+ - u+), I& = 1 / u+ 
where E, Tl and 5 are characteristic variables which remain constant along related char- 
aChiStiCs. The condition of validity of formulas (1.3) is expressed in the form of ine- 
quality 

(I. 4) 

We remind that coefficients Uij are proportional to M’ and that the coefficients of 
proportionality are of the order of unity. Note that when M tends to unity, then, in ac- 

cordance with (1.3). (1.4) and the last of formulas (1.2), the validity of the quasi-cylin- 

drical approximation requires that the derivative (In F)’ must decrease as (1 - M)2. 
Equations (I. 3) make it possible to link the parameters of the perturbed stream at the 

shock stationary position ( 2 = 0) to those at the channel outlet (z = 1) where boun- 
dary conditions are specified. Boundary conditions for x = 0 are obtained by lineariz- 

ing the relationships at the shock. They are of the form 

R+ = cpL+ - +Yx,, S, = ‘P’L+ - $,‘Yx, (1.5) 

5, * = pL+ - prx, 

(1 - 2M+) M-2 + 1 Iw---)N+~lM+ 
'P=(,+2M+)M-2+1' *= (i+21tf+)N+M+~ 

q+= M+(1-@(I--N)x/N, q’= [E--+(I-N)$]x/N 

K = g , N = i14+2d6_2, E = s (M+2 _ A$_2) 

Y = (d In F I cIx),=~ 

where x = x, (t) is the shock trajectory, a dot denotes differentiation with respect to 

t, and the subscript “minus” denotes parameters ahead of the shock. In deriving (1.5) 

we assumed, as in [3]. that no perturbations reach the closing shock from the upstream 
side. Certain differences in formulas for coefficients (1.5) from the expressions in [3] 

are due to the somewhat different notation. 

At the channel outlet the velocity is subsonic. Hence the R- and S-waves arriving 
there can be reflected in the form of L-waves. In accordance with this we specify the 
conditicm at 5 = 1 as 

L = XR -t_ X’S (1.6) 

where X and X’ are reflection coefficients which are assumed to be specified. 

2. The statement of the problem of flow stability in a channel, which is defined by 
Eqs. (1.3) with bamdary conditions (1.5) and (1.6). is not different from that in [3]. In 
accordan= with (1.3) and (1.5) the complete picture of the development of flow is pro- 
vided by the analysis of two functions of time: x, (t) and L+ (1) which are determined 

by the system of two differential-difference equations 

a%- (t) = @J+ (t) - BY&(t) (2.1) 

L+ (t) = ‘poL+ (t - T) + tpiL+ (t - 2’) - 



OntbcstabilUydflowofpdcctgaainacbmncl 429 

‘90 = xv7 qo’ = $4, $0 = x43 90’ = x’$’ 
‘t = TL + TR, ‘G’ = TL + 71j 

The first of Eqs. (2.1) is the same as the third of (1.5) with indication of arguments, 

and the second is obtained from (1.3),(1.5) and (1.6) with allowance for the reflection 
of various waves from the shock and from the channel outlet (compare with [S]) . 

The behavior of solution of system (2.1) when t --f 00 , is determined by the disposi- 

tion in the complex plane h of roots of the characteristic equation of that system which 

is of the form [4] 
H (A) E (A + BY) (1 - (Foe-xh - cpo’e-“‘) + (2.2) 

py (*oe-7h + gie-T’k) = 0 

For all solutions of (2.1) to be bounded when t -+ oo (i.e. for the reference steady 

flow to be stable) it is sufficient that the following conditions are satisfied : first, the real 

parts of all roots of (2.2) must not be positive and, second, each root of (2.2) with zero 
real parts must be simple. The first of these is also the necessary condition. The dispo- 

sition of roots of the characteristic equation depends on its coefficients which are unique- 
ly determined by x, j-, U_, and on the reflection coefficients X and X’. For a speci- 
fic gas (i. e. a gas with a fixed adiabatic exponent X) and a specified shape of the chan- 

nel (and, consequently, also I-) the analysis of stability reduces to the determination 
of a surface which in the space U-XX’ binds the stability region. The intersection of 

that surface with any arbitrary plane G_ = cons1 with 1 < L’ ( U,,,,, = 

V/(x -+ 4) / (x - 4), represents the stability region boundary in the XX’-plane. 

For any arbitrary fixed x, Y and U_ that boundary is constructed as follows. 

Since the number IL of roots of Eq. (2.2) with positive real parts depends on X and X’, 

hence different n correspond to different regions of the XX’-plane. If D (n) represents 
the related region of the XX’-plane, then D (0) coincides with the stability region. The 

used here ” D-separation” method comprises the construction of lines (“Nyquist curves” ) 

which in the xx’-plane separate regions D (n) and D (n + 1). 
In the case of continuous dependence of roots k on parameters X and X’ the equation 

of the indicated curves is defined by Re h = 0, and their construction is carried out 

as follows [l, 23. We substitute h = io, where u) is a real number, into (2.2), and de- 

fine H (io) by H (io) = P (0) f iG (co). We equate functions F (co) and G (w) 
to zero and determine from the obtained equations, which are linear with respect to x 
and x’ , the coefficients in terms of functions of o,and obtain the parametric represen- 

tation of the sought curves as x = x (Q) and x’ = x’ (o), where the functions in the 

right-hand sides are known and w varies from 0 to co. If A (0) is the determinant of 
coefficients at X and X’ , and A (0) and A ’ (co) are determinants obtained from A (Q) 

by the substitution of the column of free terms for one of its columns, then 

x (w) == A (co) / A (oJ), X’ (w) = A’ (0) / A (0) (2b 3) 
A (0) = (I-"QQ' + Q*‘P’P’) sin ao + Yo (Qcp' -Q'tp)cos ao 
A (co) = (o"cp' - Y"pQ') sin r’o - Yo (Q' + pep') cos -c'o 
A' (co) = (Y"fiQ - o*'p) sin ‘to +_ Yo (Q + fkp) cos no 
Q = pi - [kp, Q' = pq' -/3cp', a = T' -T 

For o = 0 the determinants A, &4 and A’ vanish and instead of (2.3) we obtain a 



430 V. T. Grin’, A. N. Kraiko and N. I. Tilliaeva 

“singular straight line” [l, 21 

xv pi_ X’Q’ -{- 13 --= 0 

which is also the Nyquist curve. 

(2.4) 

It is not possible to to construct Nyquist curves throughout the whole range of” fre- 

quencies” 0 < o < cm. It is, therefore, necessary to determine the stability region of 
the “simplified” characteristic equation 

Xqe-“. -; xtv’e-T’h =Z 1 
(2.5) 

which is obtained from (2.2) for ) h I> 1. 

We shall show that the rhombus 

I x(P x!I X’CD’ I < 1 (2.6) 

is to be taken as the stability region of Eq. (2.5). 

First of all, it follows from (2.5) that along the diagonals of the rhombus (2.6) ReJ, < 

0, i.e. that x’ = 0 when %‘P I < 1, and x = 0 when 1 x’cp’ 1 <4, while along the 
remaining parts of axes x and x’, He h > U. It can be further shown that the Nyquist 

curves of Eq.(2.5) do not enter the above rhombus for any T and 7’ The above clearly 

implies that the stability region of Eq. (2.5) is never smaller than the rhombus (2.6). 

It is, however, possible to give examples showing that for rational. r’ir the stability 

region in related cases is greater than the rhombus (2.6). For example, when z’iz = 1 , 
the whole band 1 x’p _t x’@ 1 < 1, which contains the considered rhombus represents such 

region, However for irrational .c’/.c the stability region coincides with rhombus (2.6). 
We shall prove this using, as in [5], Kroneker’s theorem [6]. 

Let r’/ T be irrational. We rewrite (2.5) in the form 

51 = (1 - og,)ia, a== IX’P(e-FO, b zz 1 X”P 1 e--r’a, ,& = ,+ (2.7) 
& = ,Ciel, H, = zo - arg (xcp) + 23x18, Ba = 7’0 - arg (x’ cp’) + 

2nm (o = Re h, o = Im a) 

where n and m are integers or zero. 

We have to determine the roots of Eq.(2.7), i.e. the pairs of o and o which satisfy 

that equation or two equivalent to it real relationships 

1 = R (a, v) s 11 - 2bv + b2 I/ a (2.8) 

8, = arg [(I - b&J i al (v = ~0s 0,) 

We take any arbitrary v from the interval -1 < v < 1 and determine 6,” and Co, 
for that value of Y , then from (2.8) we obtain u, and Oly. All relationships which fol- 

low from (2.5), with the exception of the last two equalities in (2.7), are then satisfied. 
These equalities can be satisfied in the case of irrational r’ /T with any required accu- 
racy by a suitable selection of 0, n and m. This statement from the Kroneker’s theorem 

by which the inequalities 

I TO- 81" + 2nn I < 6, Ir'o - OZ'+ 2nm) <S (2.9) 

81” = e,, -/- artit by), 8%” = e,, + arg (x’cp’) 

have common real solutions for irrational z’ / r and any arbitrarily small 6. Note that 

for rational a’ / 7 it is not generally possible to satisfy inequalities (2.9) for any arbitra- 

ry v. 
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Let us now take some 0, which satisfies the indicated inequalities and introduce eiu 

such that 
El" = zo, - 01" + 2nn, &2" = T'W" - 83" + 2nm (2.10) 

where n and m are integers which with the selected o ensure the satisfaction of ine- 

qualities (2.9). Hence I civ 1 < 6. The set of roots oV and oV owing to the arbitrariness 
of the selection of v in (2.8) can only be greater than the set of roots (2.7). 

We shall prove that oV and o, determined by the described procedure are as required 

close to the real and imaginary parts of some root of (2.5) or (2.7) and that, consequently, 

the inequality ou < 0 for - 1 d v < 1 is equivalent to the condition of nonpositivity of 
real parts of all roots of the characteristic equation (2.5) or (2.7). To prove this we re- 

present the roots of (2.5) in the form 

h = uV + Au $ i (ov $ Aa) (2. 11) 

Substituting (2.11) into (2.5) and expanding in Aa and Ao on the assumption of their 
smallness, and taking into consideration that oV and o, satisfy inequalities (2.8) and 
(2. lo), we obtain two linear equations for determining Aa and A@. In the right-hand 

sides of these equations we have linear combinations of eiv. It follows from this that 

I A0 I < k,8 and 1 Ao 1 < k26, where ki < CD are some constants. This proves the va- 

lidity of the statement. 

Let us formulate the conditions under which all uV and, consequently, the real parts of 
all roots of Eq.(2.5) are, by virtue of the foregoing nonpositive. For this we shall exa- 

mine function R (a, v) in (2.8). It can be readily shown that dR / dv < 0. Hence for 
-1 Q v < 1 curves R (a, Y) lie in the upper half-plane within the band bounded by 

curves I? (a, 1) and R (a, -1) of wnich the first lies for all o under the second and 

vanishes for u = u0 = (In 1 ~‘9 I) / z. Along both branches of that curve R increases 

monotonically with increasing u :,$/hen 1 u I -_$ m , H = R (a, v) -+ 00 for all curves. 

All points along the intersectio:; of the indicated band with the straight line R = 1 

correspond by virtue of the foregoing to roots of the characteristic equation. All relevant 
configurations appear in Fig. 1, where the position of the OR -axis in this case of stable 

flow is shown by the solid line, while that of the unstable one is shown by dash line . 
This implies that the condition of stability (the nonpositiveness of uy) consists of the 
simultaneous satisfaction of the two inequalities 

2’00 ? In I x’cp’ 1 < 0, R (0, 1) - (1 - I x’v’ 1 ! 1 %‘F 1 >, ” 

Fig. 1 

which are equivalent to (2.6). 
Summarizing the foregoing analysis we can 

state that the simplified characteristic equa- 

tion (2.5) yields for the stability region boun- 
dary a structure that is irregular with respect 

to z’ I z or, which is the same, to U_. For ir- 
rational ‘c’ / T the stability region coincides 
with rhombus (2.6). When z’ I T = p I q is 
rational (p ! Q is an irreducible fraction), then, 
depending on the values of p and q , some 

sections of the stability region boundary donot 
generally coincide with the sides of that rhom- 
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bus and lie outside it. Without going further into the consideration of this situation we 
point out that in all such cases it is reasonable to take the smallest stability region (with 

allowance for conditions of any particular real problem and for the possibility of an 

“uncontrollable” variation of its determining parameters). In the case considered here 

this yields rhombus (2.6). 
The determination of the Nyquist curves together with results that are valid for 

( X 1% 1 does not yield complete information about the disposition of region n (0), 
the stability region of the characteristic Input equation (2.2). Such information is pro- 

vided by the stability conditions derived in [3] for the case in which only one ofthe waves 

reaching the cross section at x = 1 is reflected from it. For 3(,’ r~= 0 these conditions 
consist of the requirement that the inequalities 

l’Fol<l: P<l -VW p < -q < Vu” (1 - ‘po2) +p2 (2.12) 

(p = --7py, q = -cy mb - P%)) 
be satisfied simultaneously. Here for p # 0 , u is taken to be the root of the equation 

sin a / (cos a - cpO) = a / p, while for p = 0 it is assumed that a = arccos ‘pO. 
In both cases a is within the interval 0 ( a ( n. 

Conditions (2.12) and their analog for x = 0 make it possible to determine the sta- 
bility region of Eq. (2.2) in the I/_% - and U-X’-planes, as was done in [3] (where by 
oversight the dash-dot lines in Figs. 2 and 3 are incorrectly represented, which does not, 

however, affect the remaining results of that paper). The determination of the stability 

region boundaries in the XX’-plane reduces to finding the smallest region which is not 
intersected by the Nyquist curves (2.3) and (2.4), lies inside rhombus (2.6), and contains 

segments of axes X and X’, which according to (2.12) or analogous inequalities corre- 

spond to stable modes in the case of X = 0 . 

3, Computations of the flow of gas with x = 1.4 in a widening channel were carried 
out as an example of the determination of stability regions by the described method. 
Some of the obtained results are shown in Figs. 2 and 3. 

Boundaries of the stability region in the &-plane are plotted in Fig. 2 for Y = 0.1 
and various u_, i. e. the intersections of the surface which bounds the stability region 

in the space U-xx’, by the planes U_ = const. The velocity U_ upstream of the shock 

was varied between 1.4 and 2.4 in steps of 0.2. Values of these velocities are indicated 
at some ofthe curves, For x and x’ which correspond to points within the related poly- 

gon the flow is stable, while outside it it is unstable. Fig. 2 and similar figures obtained 
for other values of determining parameters make it possible to solve the question of sta- 
bility or instability of flow for any specific values of reflection coefficients. Values of 
x and x’ which are obtained at constant Mach number and constant rate of flow at 
x = 1 were investigated, The values of x and x’ determined by the first of these con- 
ditions ensure the stability of flow in the channel in all cases, while the specification of 
constant rate of flow yields x and x’ close to the boundary of the stability region within 
and outside the latter, depending on the value of lJ_ . 

The effect of the channel shape (in our approximation, the parameter Y) on the con- 
figuration of the stability region is shown in Fig. 3 by solid lines (U_ = 2 .a and the nu- 
merals denote values of Y). It will be seen that variation of Y affects only one of the 
five boundaries of the polynomial. The remaining sections of the boundary in the con- 



433 

Fig. 2 

Fig. 3 

Fig. 4 

Fig. 5 
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sidered example coincide either with the singular straight line (2.4) or with boundaries 
of rhombus (2.6), and are independent of Y . Note that this pattern changes with de- 

creasing u_ . Thus for U_ = 1.1 the variation of Y results in the deformation of all 

boundaries, except the upper left-hand one which consists of the singular straight line 

(2.4). 

4. According to the definitions of 7. and z’ and (1.3) we have I//T = (1 + &I+)/ 

2M+ , which for U_ = 1 is equal unity; 
u andfor x=i.bandU_===U 

it increases monotonically with increasing 

maX reaches the value of 1.82. We introduce 

To = (T + ‘6’) / 2. For x = 1.4 the difference between the ratios T / a0 and z’ / I? 

does not exceed in absolute value 0.3. Hence it is reasonable to expect that the substi- 
tution in the complete equation (2.2) of 6’ for ‘t and 2’ will not result in a substantial 

deformation of those sections of the stability boundary which in the ” D- separation” 

method are determined by moderate values of o. For o > 1, when such simplification 

is inadmissible (since such substitution is equivalent to the neglect of the product (a - 
$)I*) which is not unity), the results based on the analysis of the simplified characteris- 

tic equation (2.5) are valid, 
In accordance with the above we set in (2.2) ‘t = a” and 7’ = z“, and obtain the 

characteristic equation with a single lag 

(h + /3Y)(l - (p”e-70h) -t pY$“e-50A = 0 

(cp” = x(P -t X’T’, w” = x9 + X’W’) 

(4.1) 

This equation which differs from that considered in [3] only in notation admits the use 

of conditions of the kind (2.12) without constructing Nyquist curves. The stability region 

is defined by the intersection of the stability region of Eq.(4.1) and rhombus (2.6). 

Without going into details of computations, we present the comparison of results ofsuch 
approximate method with those of the method described in Sects. 1 - 3, and also some 

examples of computations. 
The effectiveness of the approximate method is fairly clearly observed in Fig. 3,where 

the dash lines indicate the stability region boundaries obtained by the approximate theory. 
The dash line sections are shown only where they differ from the solid line ones. Agood 
agreement between the two methods is evident. The difference tends to diminish with 

decreasing u_ , while it increases (although insignificantly) with increasing U_. This 

comparison provides a fairly good justification for using the approximate method. Some 
of the results obtained by this method are shown in Figs. 4 and 5. 

The boundaries of the stability region for a contracting channel (Y = -0.1) are 

shown in Fig. 4 constructed on the same principle as Fig. 2. Stability regions for widening 
(I- > 0) and for narrowing (Y < 0) channels appear in Fig. 5 for &:_ = 1.3 . Two 
sides of rhombus (2.6) and the segment of the singular straight line that represent sec- 
tions of the stability region boundaries and are independent of Y, are shown by conti- 
nuous lines. The boundary sections whose shape depends on Y are shown by dash and 
dash-dot lines. The first of these relate to widening and the second to contracting chan- 
nels. Related values of Y are indicated by numerals. In Fig. 5 the stability regions for 
a widening channel with Y =: 0.2 (region I) and for a contracting channel with Y ~5 
-0.2 (region I I) are shaded on the inside of boundaries. To show more clearly the effect 
of Y on the shape of the stability region boundaries, the related boundaries for Y = 00. 



are plotted in that figure. In this case all of these are straight line segments with the 
boundary drawn by the dash line parallel to the singular straight line. 

In concluding the authors thank V. A. Panina and L. P. Frolova for their assistance, and 
A. G, Kulikovskii for useful discussions. 
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Transition of an incompressible boundary layer from the stationary section of a 

streamlined surface to its mobile section is considered under conditions of stabi- 
lized flow. Owing to the motion of a part of the surface a discontinuity of bourr- 

dary conditions occurs at the surface. It is assumed that the presence of singular- 
ity in the boundary conditions does not affect the first approximation boundary 

layer upstream of the discontinuity line. The problem thus stated was first con- 

sidered by Mager [l], who obtained an approximate solution for the simplest case 
of flow past a plate with the unperturbed stream in the form of a Blasius flow and 
the aft section of the plate moving perpendicularly to the basic stream. 

The aim of this paper is the derivation of a solution of equations of the boun- 
dary layer in the neighborhood of the discontinuity line on the mobile section 
in the general case of three-dimensional flows. The solution upstream of that 
,line is assumed known. The method used here may be considered as a general- 
ization of the method of continuation [2l to the case of the three-dimensional 
boundary layer. A similar scheme of solution derivation for two-dimensional 
problems of a compressible boundary layer was proposed in [33. 


